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Abstract — This article presents an optimization process 

working with a modeling method based on an hybrid 

Boundary Elements Method (BEM) and Fast Multipole 

Method (FMM). Actually, optimization step of designing an 

industrial device has taken great importance since relevant 

evolution of computer science. In that way, combining 

different modeling methods can bring important improvement 

to this step. After presenting the different modeling and 

optimization methods, the way they are made working 

together will be given and electrostatic application is 

presented. 

I. INTRODUCTION 

Designing an industrial device needs to predict the 

effects of its functioning. For an electrostatic device, it 

means being able to compute the electric fields or 

capacitance for example. To do so, different modeling 

methods exist, such as the most used Finite Element 

Method (FEM) and the Boundary Elements Method (BEM). 

Those ones both offer advantages and drawbacks. BEM 

induces less post processing noise due to an only surface 

meshing of the structure but is numerically limited from 

using full interaction matrixes. Anyway, its use is well 

adapted to structure optimization as only surface meshing 

has to be modified during each step. To overcome this 

limitation, combining this to a Fast Multipole Method 

(FMM) would bring great numerical improvement for using 

a finer meshing. 

II. HYBRID BEM / FMM IN ELECTROSTATIC 

Let first introduce the application area of the work 

which is the capacitance optimization of an electrostatic 

device. We define the capacitance C of a structure as 

follows: 
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In this last equation, Q is the charge in Coulomb and V 

the potential in Volts, which repartition is the given 

information. 

A. Use of a Boundary Element Method 

In the right member of (1) is considered a surface 

meshing in N elements. On this meshing we consider a 

zero-order hypothesis where each quantity is constant by 

element. We also consider quantities at the geometric center 

of elements (point matching) which will define distances 

during integration. In most cases, structure geometry and 

voltage repartition are known, so only charges repartition 

has to be primarily computed. This can be done with a 

Boundary Element Method, building a N x N system: 
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The coefficients of matrix A can then be calculated 

thanks to the electrostatic equation: 
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In this last equation ε is the domain permittivity and rij 

the distance between the geometric center of element i and 

a varying point j of the source surface Sj. This coefficient 

can also be approximated by a sum based on placing Gauss 

points (correctly weighted) on Sj. After obtaining the full 

matrix A, the solution of (2) has several numerical 

difficulties when working with too many meshing elements. 

This problem can be overcome with a FMM. 

B. Improvement thanks to a Fast Multipole Method 

The FMM is a relative recent method that hierarchizes a 

meshing through a separation of proximate and far 

interactions. Different ways to build this meshing 

repartition have been developed but we will only focus on a 

fast adaptive multi-level one [1]. This aims to set a 

maximum number m of meshing elements in cubes. 

Practically, a first cube is built, containing all meshing 

elements (zero level). Then it is subdivided into eight new 

ones (level one) and only those who contain meshing 

elements are kept. If some cubes have more elements than 

m, they are subdivided once again until every lowest-level 

cubes have less or equal m elements (childless). After 

classifying all elements in this cubic hierarchy (Octree), a 

neighborhood study of each cube (of each level) is 

performed to separate most influencing cube towards 

others, creating 5 new groups [1]. 

At each cubic centre of childless element a multipole is 

computed from all charged elements contained inside. In 

spherical coordinates, this multipole creates an electrical 

potential V at a P point with the following equation: 
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In this last equation (r, θ, φ) are the P coordinates, p the 

multipole order and the Mn
m

 the coefficient (which have to 

be computed one time for each childless cube): 
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whereYn
m
 are Legendre polynomial coefficients, qi the 

charge value of the i-element (for N contained in the cube) 

which has (ρi, αi, βi) spherical coordinates. After computing 

those coefficients, translation and conversion laws allow 

considering this multipole at a P point, which can be the 

center of another childless cube. In that way all elements far 

away from a childless cube can be approximated by locals 

written at its center, as shown in [1]. 

Remembering we want to get the capacitance of a 

structure from the knowledge of V repartition, we have to 

find Q, unknown vector of charge repartition on meshing 

elements. We have to write (4) for each meshing element, 

which give all far interactions. For close interactions (all 

other elements contained in the childless cube of P), a BEM 

is followed, creating a full square matrix for each childless 

cube. This can be summarized in the following system: 
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In this last equation, P is a sparse matrix made of square 

sub matrixes and Vfar the potential created by far 

interactions thanks to (4). 

C. Solving the system 

We have to remark than system (6) is not directly 

solvable, as we do not have a direct interaction matrix like 

in (2). An iterative solver is needed, updating Q at each 

step. It is decided to choose the GMRES (General 

Minimum RESidual) one, well adapted to square 

symmetrical matrixes [2]. The main goal is not to solve a 

system but minimizing the following residual norm: 
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Different methods can be used to improve this method, 

such as the Arnoldi process and the Givens rotation [3]. A 

pre-conditioning of matrix P gives also better results by 

scaling P coefficients, thanks to the maximum and 

minimum eigenvalues. After N or less iterations, Q is 

obtained and the capacitance can be extracted.  

III. USING HYBRID BEM/FMM IN OPTIMIZATION 

Let focus on a particular electrostatic context as an 

applicative area. Main objective is to define some design 

criteria for minimizing an objective function based on 

capacitance computation: 
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In this last equation p is a vector of geometric 

parameters of the structure. To find the best parameters pf 

from an initial p0, it is possible to use an iterative gradient 

based method, like the Steepest Descent [3]. This leads to 

define a normalized search direction dk and a parameter αk, 

depending pk. The process is the following: 

 

1. Compute dk = - grad(OF(pk)) / ||grad(OF(pk))|| 

2. Find αk that minimizes OF(pk+ αk.pk) 

3. Update pk+1: pk+1 = pk + αk.pk 

The algorithm stops when the evaluation of OF(pk+1) is 

sufficiently proximate to OF(pk). To realize step 2, a 

quadratic line search can be done [3]. The main difficulty of 

this method is the evaluation of grad(OF(pk)). Let focus on 

the example of 2 similar plates (-0.5V and 0.5V), forming a 

capacitor with 3 geometrical parameters h, s and e: 

 
Fig. 1. Capacitor example with 3 geometric parameters h, s and e  

 

Let first consider the BEM to model the physical 

behavior of this capacitor. Computing the gradient of the 

objective function leads to get the capacitance one and so 

the charges one. This can be done by using the adjoint state 

method [4], which needs a matrix relation between V and 

Q. This relation, written in (2), has to be derived by all 

parameters, that is to say building a matrix from the 

derivation of the integral terms in (3) by h, s and e. This 

gives the following result, after 11 iterations: 

TABLE I THE OPTIMIZATION PROCESS WHEN CM = 6.6PF (WITH BEM) 

Point h (m) s(m) e (m) 

Starting  0.2 0.2 m 0.05 

Final  0.1027 0.1014 m 0.01987 

 

Another difficulty stands then in introducing the FMM 

in this process as the interaction matrix A is no longer 

available. This can be done by summing for each geometric 

center the gradient of the close interaction matrix (as the 

previous method) and the FMM gradient (thanks to a 

derivation of (4) and (5) by h, s and e). 

IV. CONCLUSION 

 This article has presented the use of an hybrid 

BEM/FMM method which allows computing quickly 

electrostatic quantities of a defined device. This method can 

be plugged into an optimization process, computing a 

chosen objective function. The optimization process chosen 

is deterministic: the Steepest Gradient. This iterative 

method requires the gradient of the modeling method which 

has to be carefully computed with the FMM.  
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